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■ Uncertainty often missing
in (German) flood predic-
tion systems

■ May affect decisions taken.
e.g. Reservoir management

■ Balance between informa-
tion content and ease of
communication

■ Exceedence probabilities
and corresponding flood
loss estimation



Components of the Prediction System

Introduction
Decision under
Uncertainty
Components of the
Prediction System

Initial state and
forcing: Method and
results

Hydrological
Uncertainty Processor:
Method and results

Decision making

Conclusions

5 / 24



Components of the Prediction System

Introduction
Decision under
Uncertainty
Components of the
Prediction System

Initial state and
forcing: Method and
results

Hydrological
Uncertainty Processor:
Method and results

Decision making

Conclusions

5 / 24



Components of the Prediction System

Introduction
Decision under
Uncertainty
Components of the
Prediction System

Initial state and
forcing: Method and
results

Hydrological
Uncertainty Processor:
Method and results

Decision making

Conclusions

5 / 24



Components of the Prediction System

Introduction
Decision under
Uncertainty
Components of the
Prediction System

Initial state and
forcing: Method and
results

Hydrological
Uncertainty Processor:
Method and results

Decision making

Conclusions

5 / 24



Components of the Prediction System

Introduction
Decision under
Uncertainty
Components of the
Prediction System

Initial state and
forcing: Method and
results

Hydrological
Uncertainty Processor:
Method and results

Decision making

Conclusions

5 / 24



Initial state and forcing: Method and results

Introduction

Initial state and
forcing: Method and
results
Initial states and
forcing
Example: Medium
range forecast

Weisseritz Catchment

Weisseritz Catchment

WaSiM ETH
Ensemble Discharge
Forecast

Hydrological
Uncertainty Processor:
Method and results

Decision making

Conclusions

6 / 24



Initial states and forcing

Introduction

Initial state and
forcing: Method and
results
Initial states and
forcing
Example: Medium
range forecast

Weisseritz Catchment

Weisseritz Catchment

WaSiM ETH
Ensemble Discharge
Forecast

Hydrological
Uncertainty Processor:
Method and results

Decision making

Conclusions

7 / 24

■ Initial states

◆ Snow
◆ Soil Moisture

■ Rainfall predictions

◆ Radar now-casting
◆ COSMO-DE

(Previously LMK)
◆ Medium Range:

ECMWF Ensemble
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■ Rainfall predictions

◆ Radar now-casting
◆ COSMO-DE

(Previously LMK)
◆ Medium Range:

ECMWF Ensemble
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■ Downscaling
■ ECMWF ensemble forecasts
■ Linear regression between circulation patterns and local

weather
■ Constraint: Preserving local covariance structure
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■ Eastern Ore mountains at
the Czech-German border

■ Total area of 384 km2

■ Two large multipurpose
reservoirs in the Wilde
Weisseritz

■ August 2002: severe flood-
ing: Dresden main train sta-
tion and villages along the
river.
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■ Deterministic, distributed rainfall-runoff model (Schulla&
Jasper 1999)

■ Provides methods for the interpolation of meteorological input
■ Describes the soil water based on the TOP-model approach

(Beven & Kirkby 1979)
■ Macro pores are described with an extension by Niehoff et al.

(2000)
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■ Range of the ensemble prediction is small for times with
predictable conditions

■ Range much wider for the time of the extreme rainfall event
■ Uncertainty clearly larger with increasing prediction times
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■ Based on transformation of
data to normal distributions.

■ First order transition proba-
bility

■ Likelihood function for
forecast and observation

■ R-package soon published
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R. Krzysztofowicz and K. S. Kelly. Hydrologic uncertainty processor for
probabilistic river stage forecasting.WATER RESOURCES RESEARCH,
36(11):3265–3277, 2000
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■ Alps at the German-
Austrian border

■ Total area of 954 km2

■ 650 to 2700 m asl
■ highest recorded floods (in

100 years) in May 1999
and August 2005 (850 and
900 m3)
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■ Conceptual, distributed
rainfall-runoff model (Lud-
wig and Bremicker, 2007)

■ Provides methods for oper-
ational flood forecasting

■ Flood predictions calcu-
lated at the Bavarian Flood
Warning Center
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■ Without prediction: First order Markov process
■ Converging to probability distribution of observed discharge

level for a given month


prior.avi
Media File (video/avi)
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■ Combination of forecast and Markov process
■ Converging to probability distribution of observed discharge

level for a given month


posterior.avi
Media File (video/avi)



Decision making

Introduction

Initial state and
forcing: Method and
results

Hydrological
Uncertainty Processor:
Method and results

Decision making
Socioeconomic
Model:FLEMO

Reservoir management

Conclusions

19 / 24



Socioeconomic Model:FLEMO

Introduction

Initial state and
forcing: Method and
results

Hydrological
Uncertainty Processor:
Method and results

Decision making
Socioeconomic
Model:FLEMO

Reservoir management

Conclusions

20 / 24

■ FLEMO: losses depending on water level, building type and building
quality/size.

■ Second stage: effects of private precautionary measure and
contamination of the floodwater.

H. Kreibich, I. Seifert, et al.Hydrological Sciences Journal, submitted.

A.H. Thieken and H. Kreibich.Journal of Hydrology, submitted.
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■ Uncertainty based manage-
ment

■ Probability to cause damage
greater threshold (e.g. 50%)
triggers scenario testing

■ Scenario range:

◆ Maximum damage free
release

◆ Maximum reduction of
peak discharge

■ Expected (from prediction
ensemble) damage for

◆ Pre-event release
◆ Event itself
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■ Quantification of input uncertainties (for ECMWF ensemble)
■ Quantification of model uncertainties
■ Neither source of uncertainty can be excluded a priori
■ Next steps:

◆ combination of approaches with flood loss model
◆ uncertainty of radar now-casting
◆ precipitation dependent hydrological uncertainty processor
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