Data- and Predictive Uncertainties in Flood Forecasting: How to Decide under Uncertain Information

D.E. Reusser¹, G. Bürger¹, E. Zehe², and **A. Bronstert**¹
1 University of Potsdam, Institute for Geoecology
2 TU München, Institute for Water and Environment
(dreusser@uni-potsdam.de)

4th International Symposium on Flood Defence, Mai 2008

Outline

Introduction

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Conclusions

Introduction

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Introduction

Decision under Uncertainty Components of the Prediction System

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Conclusions

Introduction

Decision under Uncertainty

Introduction Decision under Uncertainty

Components of the Prediction System

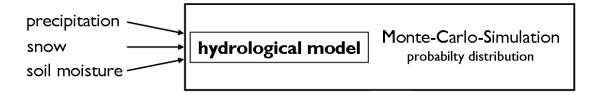
Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

- Uncertainty often missing in (German) flood prediction systems
- May affect decisions taken.e.g. Reservoir management
- Balance between information content and ease of communication
- Exceedence probabilities and corresponding flood loss estimation

Introduction


Decision under Uncertainty

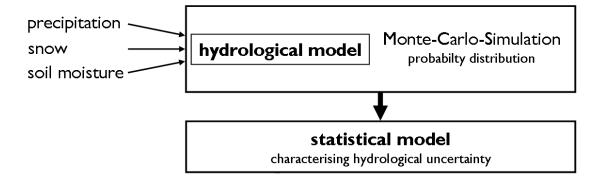
Components of the Prediction System

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Introduction


Decision under Uncertainty

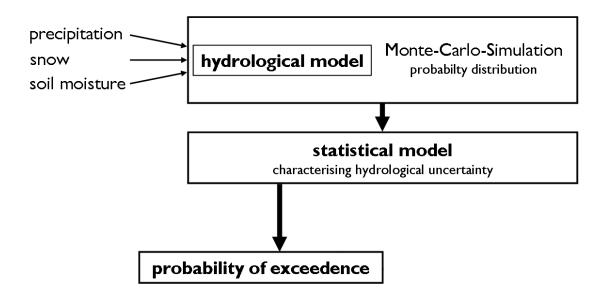
Components of the Prediction System

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Introduction


Decision under Uncertainty

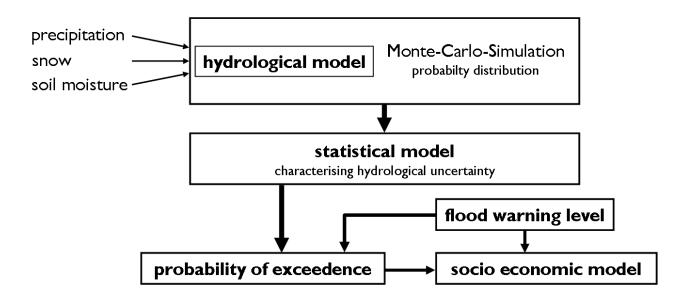
Components of the Prediction System

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Introduction


Decision under Uncertainty

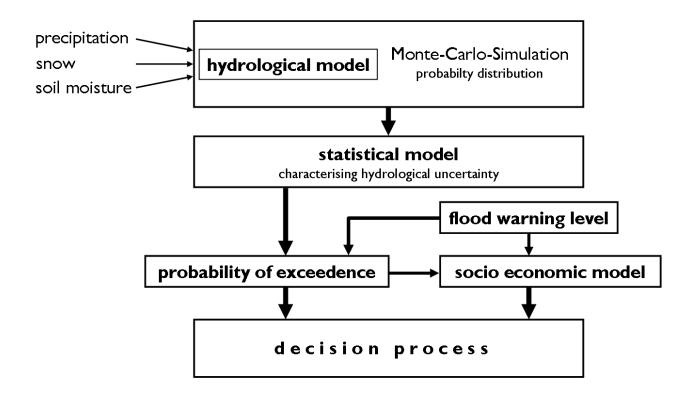
Components of the Prediction System

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Introduction


Decision under Uncertainty

Components of the Prediction System

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Introduction

Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast

Weisseritz Catchment

Weisseritz Catchment

WaSiM ETH

Ensemble Discharge

Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

Conclusions

Initial state and forcing: Method and results

Introduction

Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast

Weisseritz Catchment

Weisseritz Catchment

WaSiM ETH Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

- Initial states
 - **♦** Snow
 - ♦ Soil Moisture
- Rainfall predictions
 - ♦ Radar now-casting
 - ◆ COSMO-DE (Previously LMK)
 - Medium Range:ECMWF Ensemble

Introduction

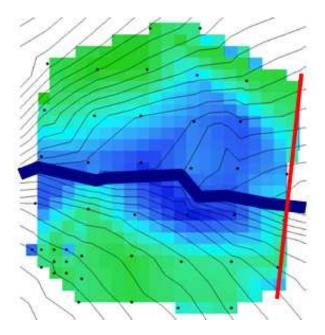
Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast

Weisseritz Catchment

Weisseritz Catchment


WaSiM ETH
Ensemble Dis

Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

- Initial states
 - **♦** Snow
 - ♦ Soil Moisture
- Rainfall predictions
 - ♦ Radar now-casting
 - ◆ COSMO-DE (Previously LMK)
 - Medium Range:ECMWF Ensemble

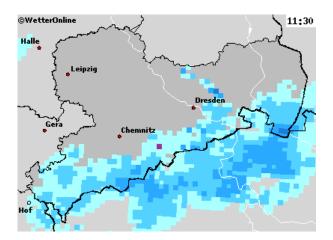
Introduction

Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast

Weisseritz Catchment


Weisseritz Catchment

WaSiM ETH Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

- Initial states
 - **♦** Snow
 - ♦ Soil Moisture
- Rainfall predictions
 - ♦ Radar now-casting
 - ◆ COSMO-DE (Previously LMK)
 - Medium Range:ECMWF Ensemble

Introduction

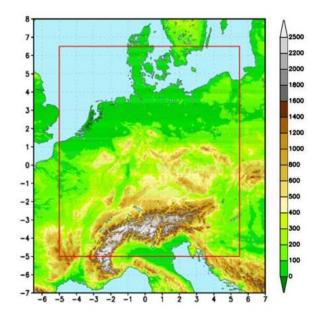
Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast

Weisseritz Catchment

Weisseritz Catchment


WaSiM ETH Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

Conclusions

- Initial states
 - **♦** Snow
 - ♦ Soil Moisture
- Rainfall predictions
 - ♦ Radar now-casting
 - ◆ COSMO-DE (Previously LMK)
 - Medium Range:ECMWF Ensemble

Source: www.dwd.de

Introduction

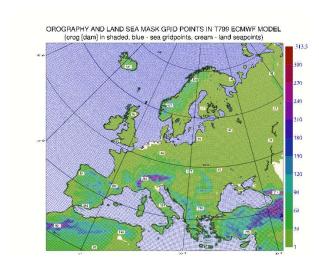
Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast

Weisseritz Catchment

Weisseritz Catchment


WaSiM ETH Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

Conclusions

- Initial states
 - **♦** Snow
 - ♦ Soil Moisture
- Rainfall predictions
 - Radar now-casting
 - ◆ COSMO-DE (Previously LMK)
 - Medium Range:ECMWF Ensemble

Source: www.ecmwf.int

Example: Medium range forecast

Introduction

Initial state and forcing: Method and results

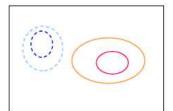
Initial states and forcing

Example: Medium range forecast

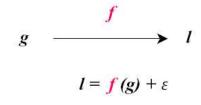
Weisseritz Catchment Weisseritz Catchment WaSiM ETH Ensemble Discharge

Hydrological Uncertainty Processor: Method and results

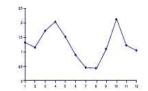
Decision making


Conclusions

Forecast


Downscaling

- ECMWF ensemble forecasts
- Linear regression between circulation patterns and local weather
- Constraint: Preserving local covariance structure


global/NA circulation g (Z_{500} , T_{850} , Q_{850} , ...)

transfer function f

local weather I

Weisseritz Catchment

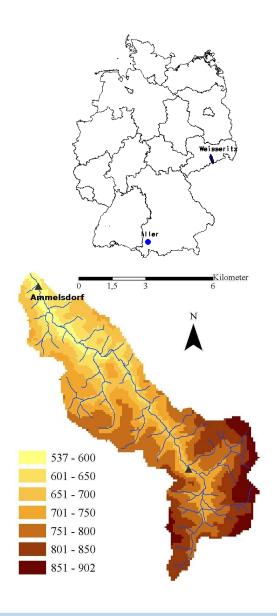
Introduction

Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast

Weisseritz Catchment


Weisseritz Catchment WaSiM ETH Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

- Eastern Ore mountains at the Czech-German border
- Total area of 384 km²
- Two large multipurpose reservoirs in the Wilde Weisseritz
- August 2002: severe flooding: Dresden main train station and villages along the river.

Weisseritz Catchment

Introduction

Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast

Weisseritz Catchment

Weisseritz Catchment

WaSiM ETH Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

WaSiM ETH

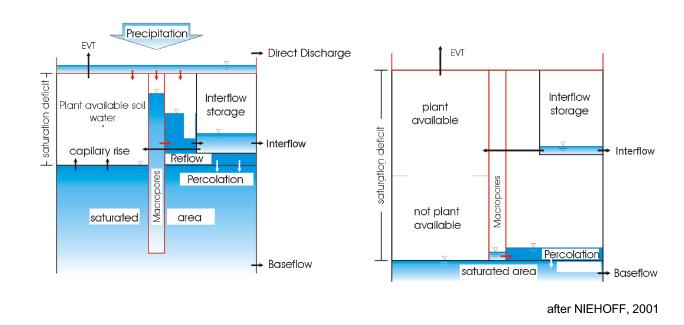
Introduction

Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast

Weisseritz Catchment Weisseritz Catchment


WaSiM ETH

Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

- Deterministic, distributed rainfall-runoff model (Schulla & Jasper 1999)
- Provides methods for the interpolation of meteorological input
- Describes the soil water based on the TOP-model approach (Beven & Kirkby 1979)
- Macro pores are described with an extension by Niehoff et al.
 (2000)

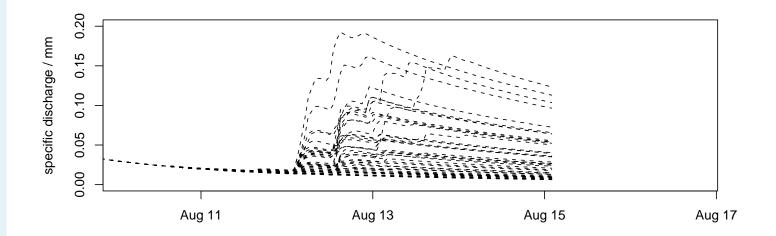
Introduction

Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast

Weisseritz Catchment


Weisseritz Catchment

WaSiM ETH

Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

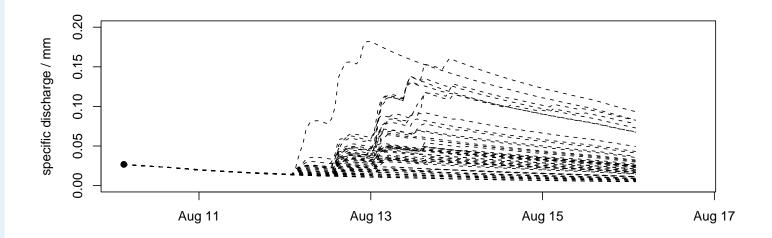
- Range of the ensemble prediction is small for times with predictable conditions
- Range much wider for the time of the extreme rainfall event
- Uncertainty clearly larger with increasing prediction times

Introduction

Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast


Weisseritz Catchment Weisseritz Catchment

WaSiM ETH

Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

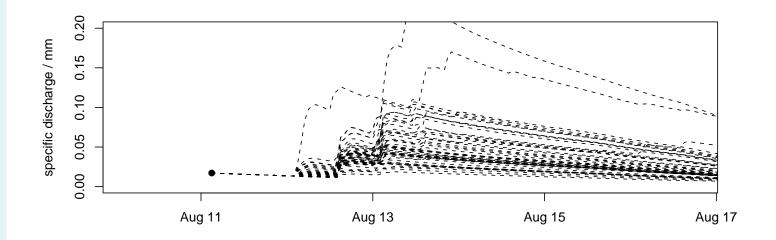
- Range of the ensemble prediction is small for times with predictable conditions
- Range much wider for the time of the extreme rainfall event
- Uncertainty clearly larger with increasing prediction times

Introduction

Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast


Weisseritz Catchment Weisseritz Catchment

WaSiM ETH

Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

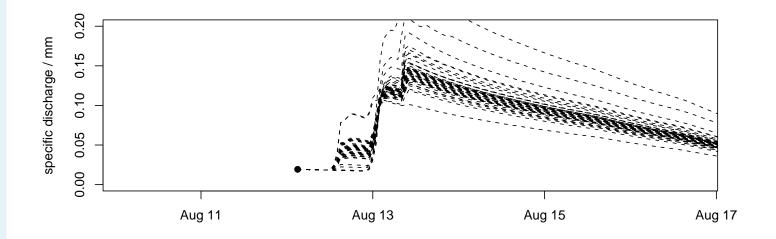
- Range of the ensemble prediction is small for times with predictable conditions
- Range much wider for the time of the extreme rainfall event
- Uncertainty clearly larger with increasing prediction times

Introduction

Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast


Weisseritz Catchment Weisseritz Catchment

WaSiM ETH

Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

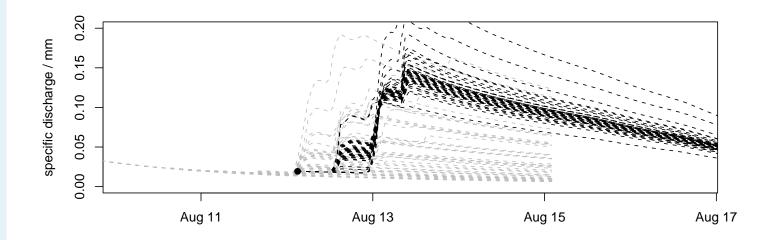
- Range of the ensemble prediction is small for times with predictable conditions
- Range much wider for the time of the extreme rainfall event
- Uncertainty clearly larger with increasing prediction times

Introduction

Initial state and forcing: Method and results

Initial states and forcing

Example: Medium range forecast


Weisseritz Catchment Weisseritz Catchment

WaSiM ETH

Ensemble Discharge Forecast

Hydrological Uncertainty Processor: Method and results

Decision making

- Range of the ensemble prediction is small for times with predictable conditions
- Range much wider for the time of the extreme rainfall event
- Uncertainty clearly larger with increasing prediction times

Introduction

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Hydrological Uncertainty Processor

Iller catchment

Larsim Prior expected discharge level Posterior expected discharge level

Decision making

Conclusions

Hydrological Uncertainty Processor: Method and results

Hydrological Uncertainty Processor

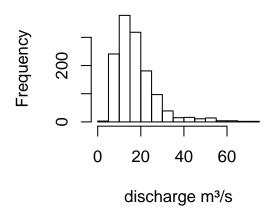
Introduction

Initial state and forcing: Method and results

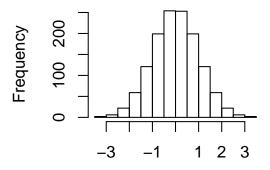
Hydrological Uncertainty Processor: Method and results

Hydrological Uncertainty Processor

Iller catchment


Larsim Prior expected discharge level Posterior expected discharge level

Decision making


Conclusions

- Based on transformation of data to normal distributions.
- First order transition probability
- Likelihood function for forecast and observation
- R-package soon published

Before transformation

After transformation

normally distributed discharge

Hydrological Uncertainty Processor

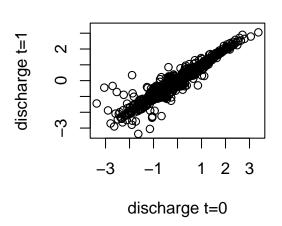
Introduction

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Hydrological Uncertainty Processor

Iller catchment


Larsim Prior expected discharge level Posterior expected discharge level

Decision making

Conclusions

- Based on transformation of data to normal distributions.
- First order transition probability
- Likelihood function for forecast and observation
- R-package soon published

Transition probability

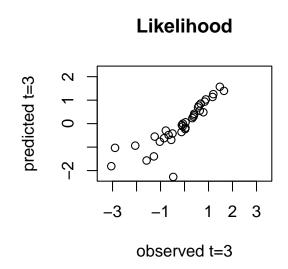
R. Krzysztofowicz and K. S. Kelly. Hydrologic uncertainty processor for probabilistic river stage forecasting. *WATER RESOURCES RESEARCH*, 36(11):3265–3277, 2000

Hydrological Uncertainty Processor

Introduction

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results


Hydrological Uncertainty Processor

Iller catchment
Larsim
Prior expected
discharge level
Posterior expected
discharge level

Decision making

Conclusions

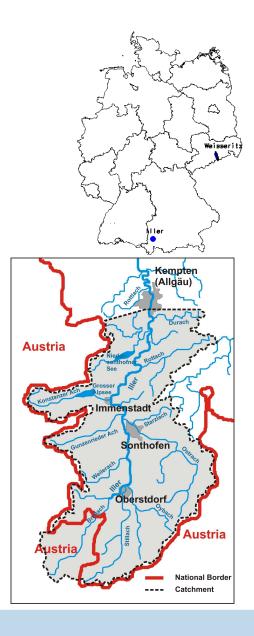
- Based on transformation of data to normal distributions.
- First order transition probability
- Likelihood function for forecast and observation
- R-package soon published

R. Krzysztofowicz and K. S. Kelly. Hydrologic uncertainty processor for probabilistic river stage forecasting. *WATER RESOURCES RESEARCH*, 36(11):3265–3277, 2000

Iller catchment

Introduction

Initial state and forcing: Method and results


Hydrological
Uncertainty Processor:
Method and results
Hydrological
Uncertainty Processor

Iller catchment

Larsim Prior expected discharge level Posterior expected discharge level

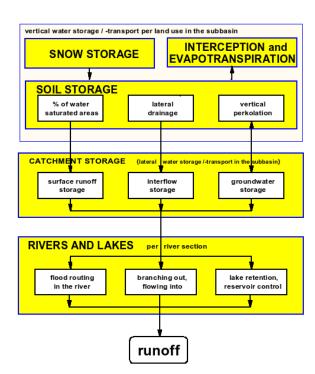
Decision making

- Alps at the German-Austrian border
- Total area of 954 km²
- 650 to 2700 m asl
- highest recorded floods (in 100 years) in May 1999 and August 2005 (850 and 900 m³)

Larsim

Introduction

Initial state and forcing: Method and results


Hydrological
Uncertainty Processor:
Method and results
Hydrological
Uncertainty Processor
Iller catchment

Larsim

Prior expected discharge level Posterior expected discharge level

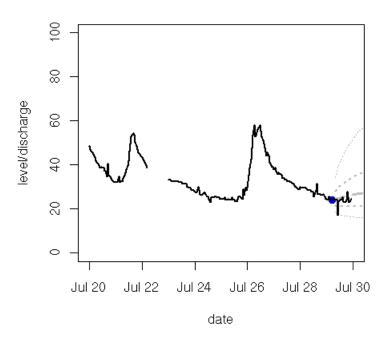
Decision making

- Conceptual, distributed rainfall-runoff model (Ludwig and Bremicker, 2007)
- Provides methods for operational flood forecasting
- Flood predictions calculated at the Bavarian Flood Warning Center

Prior expected discharge level

Introduction

Initial state and forcing: Method and results


Hydrological
Uncertainty Processor:
Method and results
Hydrological
Uncertainty Processor
Iller catchment

Larsim
Prior expected

discharge level

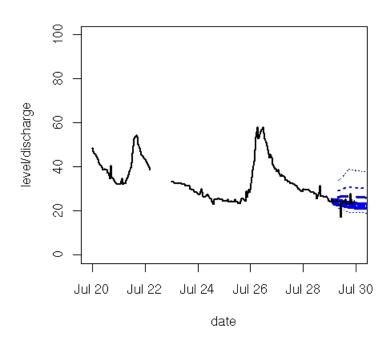
Posterior expected discharge level

Decision making

- Without prediction: First order Markov process
- Converging to probability distribution of observed discharge level for a given month

Posterior expected discharge level

Introduction


Initial state and forcing: Method and results

Hydrological
Uncertainty Processor:
Method and results
Hydrological
Uncertainty Processor
Iller catchment
Larsim

Prior expected discharge level

Posterior expected discharge level

Decision making

- Combination of forecast and Markov process
- Converging to probability distribution of observed discharge level for a given month

Introduction

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

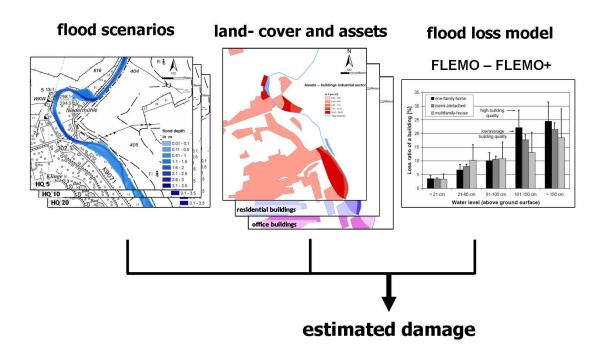
Socioeconomic Model:FLEMO Reservoir management

Conclusions

Decision making

Socioeconomic Model:FLEMO

Introduction


Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Socioeconomic Model:FLEMO

Reservoir management

- FLEMO: losses depending on water level, building type and building quality/size.
- Second stage: effects of private precautionary measure and contamination of the floodwater.
- H. Kreibich, I. Seifert, et al. Hydrological Sciences Journal, submitted.
- A.H. Thieken and H. Kreibich. *Journal of Hydrology*, submitted.

Reservoir management

Introduction

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Socioeconomic Model:FLEMO

Reservoir management

- Uncertainty based management
- Probability to cause damage greater threshold (e.g. 50%) triggers scenario testing
- Scenario range:
 - Maximum damage free release
 - Maximum reduction of peak discharge
- Expected (from prediction ensemble) damage for
 - Pre-event release
 - ♦ Event itself

Introduction

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Conclusions

Conclusion
Acknowledgments

Conclusion

Introduction

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Conclusions

Conclusion

Acknowledgments

- Quantification of input uncertainties (for ECMWF ensemble)
- Quantification of model uncertainties
- Neither source of uncertainty can be excluded a priori
- Next steps:
 - combination of approaches with flood loss model
 - uncertainty of radar now-casting
 - precipitation dependent hydrological uncertainty processor

Acknowledgments

Introduction

Initial state and forcing: Method and results

Hydrological Uncertainty Processor: Method and results

Decision making

Conclusions

Conclusion

Acknowledgments

Thank you for your attention

Acknowledgments

- Funding: BMBF-Förderaktivität "Risikomanagement extremer Hochwasserereignisse" (RIMAX)
- Bavarian Flood Warning Center (Uwe Ehret) for hydrological predictions for the Iller
- Jenny Eckart for WaSiM-setup of the input data