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Benefits of reliability analysis

Aim of a reliability analysis in river flood protection

Systematic determination of flood risk as cost-benefit-analysis

Risk = Failure probability x Consequence

Not: „This is a potential weak spot!“

But: „Those are the sections to start improving the
flood protection.“

And: „Those are the most cost-efficient measures.“
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Outline

• Introduction into reliability analysis

• Case study Elbe river

• Probabilistic Finite-Element Analysis of embankment stability

• Conclusions and Outlook
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Introduction into reliability analysis

SRZ −= R: Resistance, S: Stress

Stress x, Resistance x

Failure probability p(Z<0)
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distributed variables and Z = R - S: 

Limit state equation:
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Case study Elbe river

Torgau / Saxony
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Case study Elbe river

Comparison to a 100-year flood only considering overflow (Dike stretch B)
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Case study Elbe river

Computed failure probabilities for dike stretch B
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Case study Elbe river

Comparison to Elbe flood 2002 - dike failure statistics (Horlacher, 2005)
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Case study Elbe river

Reliability water level and reliability freeboard

Design flood 
water level

Reliability water level

Reliability freeboard Dike body
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Freeboard for a HQ100 Reliability freeboard
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Probabilistic Finite-Element Analysis 

of embankment stability

2.83 m
4.06

HB = γw· zB

1.44 m

1.70 m

1
5.99h

HA = γw· zA

1

1.00 m

q = 0?

Total incremental displacements

→ Stability reserves due to transient seepage effects can be quantified.

→ Zoned dike structure can be taken into account.

Benefits:

N
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Probabilistic Finite-Element Analysis 

of embankment stability

Stochastic input parameters
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Friction angle ϕ‘
→ normally

distributed

Effective cohesion c‘
→ lognormally distributed

Permeability k
→ lognormally distributed

µϕ’ = 17.1°
σϕ’ = 1.76°

µc’ = 4.65 kN/m²
σc’ = 3.72 kN/m²

µk = 5 · 10-5 m/s
σk = 2.5 · 10-5 m/s

µϕ’
µc

’

µk =

’

3 Scenarios:hmax,1 = 2.83 m 
hmax,2 = 2.40 m
hmax,3 = 1.20 m

h

→ Correlated river water level h 
and duration of the flood wave N
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Probabilistic Finite-Element Analysis 
of embankment stability

Phase shift between maximum water level and minimum factor of safety

→ Factor of safety ? needs to be checked for various time steps 
for various flow patterns
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Probabilistic Finite-Element Analysis 

of embankment stability

First Order Reliability Method with Adaptive Response Surface (FORM-ARS)

Perform numerical simulations around mean value

Output: Factor of safety ? from a numerical stability analysis

Find best-fit Response Surface for ? = b0 + b1· f ‘ + b2· c‘+ b3· k 

Find design point for Response Surface

Check design point with numerical results

IF ( ? ˜ 1 )  AND IF   ( New design point = Old design point )

Determination of failure probability

then

Perform numerical
simulations around

the design point

else
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Probabilistic Finite-Element Analysis 

of embankment stability

Response Surfaces for three different maximum water levels

Transformation into standard-normalized variables:

Cohesion u2Friction angle u1
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hmax,1 = 2.83 m

hmax,2 = 2.40 m

hmax,3 = 1.20 m

Numerical
results β1 ˜ 3.18
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→ 240 Finite-Element calculations → Return period of failure: ˜ 40,000 years

β2 ˜ 3.41
β3 ˜ 4.01
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Conclusions and Outlook

• Reliability analysis as basis for a reliable flood risk 
management

• Comparable tendency with dike failure statistics during the 
flood in 2002

• Integration of a probabilistic FE-analysis for slope instabilities 
which regards zoned dikes and transient seepage effects

• Provision of a tool for risk-based river flood protection

• Accompanying paper at ISFD4 2008 by Merkel and Westrich
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Thank you for your attention!

Questions?
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