
**Economic Impact of Water** Infrastructure: **Proposal of Evaluation** Naoyuki Yoshino **Dean, Asian Development Bank Institute** (ADBI) **Professor Emeritus of Keio University** nyoshino@adbi.org





Kg = public capital (infrastructure)



#### Highway (User charges) Non-affected region (low rate of return) Spillover effect Non-affected Employmen region Private investment developmen\* Spillover effect Increase of property tax revenue



#### Return the spillover effects to Investors

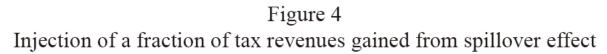
The production technology of the private sector is represented by the following production function.

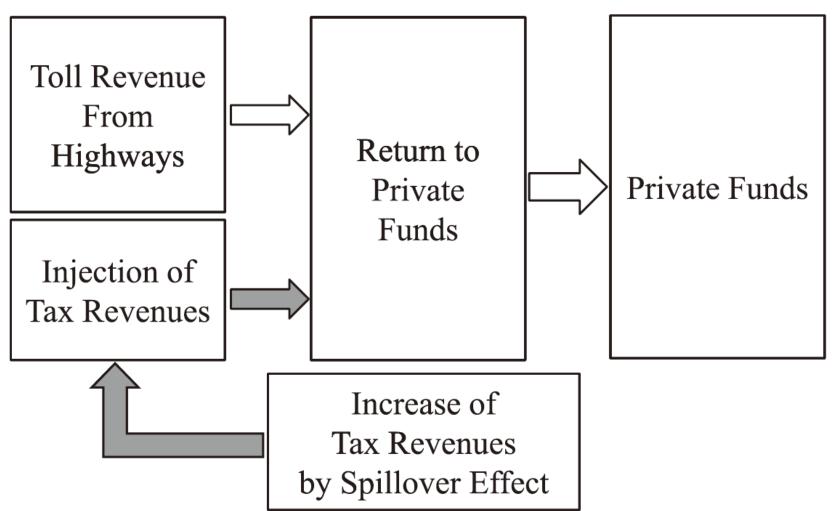
$$Y = f(K_{p}, L, K_G) \tag{1}$$

where Y denotes output (in value added) in the private sector. The output is produced by combining private capital stock, *Kp*, labor input, L, and infrastructure stock, K<sub>G</sub>.

In this paper, we assume the translog production function.

$$\ln Y = \alpha_0 + \alpha_K \ln K_p + \alpha_L \ln L + \alpha_G \ln K_G$$


$$+ \beta_{KK} (1/2) (\ln K_p)^2 + \beta_{KL} \ln K_p \ln L + \beta_{KG} \ln K_p \ln K_G$$


$$+ \beta_{LL} (1/2) (\ln L)^2 + \beta_{LG} \ln L \ln K_G + \beta_{GG} (1/2) (\ln K_G)^2$$
(2)

Assuming the production function represented by equation (1), and that factor prices and infrastructure are given for producers in the private sector, the effect of infrastructure on productivity is expressed as:

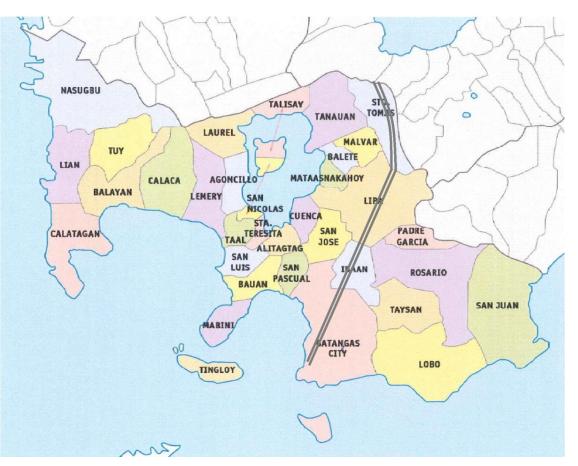
$$\frac{dY}{dK_G} = \frac{\partial Y}{\partial K_G} + \frac{\partial Y}{\partial K_P} \frac{\partial K_P}{\partial K_G} + \frac{\partial Y}{\partial L} \frac{\partial L}{\partial K_G}$$
(9)

Here, the effect of infrastructure is divided into three parts; the first term on the right hand side of equation (9) represents *direct effect*; the second term is the *indirect effect* on output with respect to the resulting change in the input of private capital and the third term is the *indirect effect* on output with respect to the resulting effect on labor input.

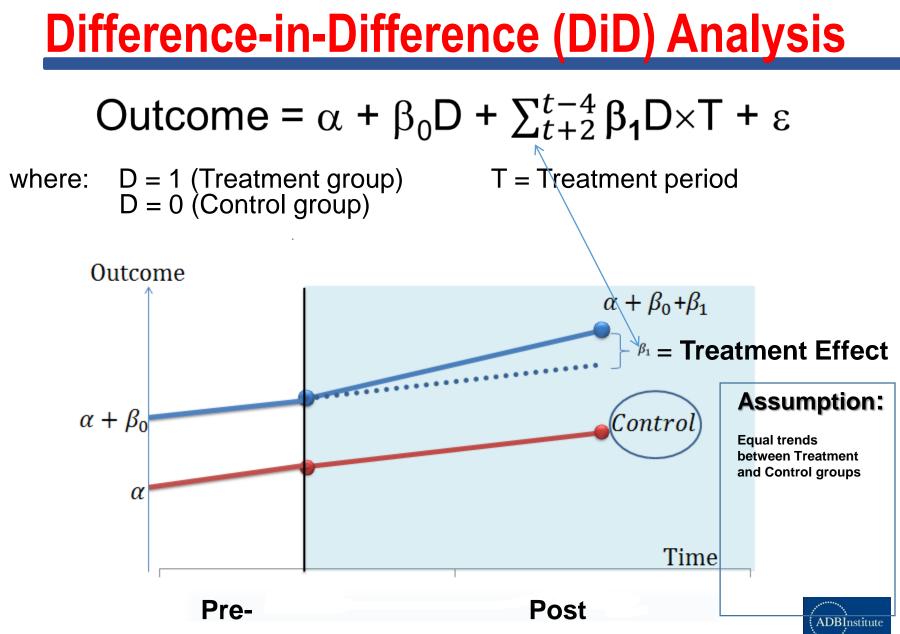







### Spillover effects $\rightarrow$ Return to investors

1956-60 1961-65 1966-70 1971-75 1976-80 1981-85


| Direct Effect ( | (Kg)   | 0     | ).696 | 0.    | 737 | 0.6    | 38  | 0.50  | 8 0.359  | 0.275        |
|-----------------|--------|-------|-------|-------|-----|--------|-----|-------|----------|--------------|
| Indirect Effect | t (Kp) | 0     | ).453 | 0.    | 553 | 0.4    | 88  | 0.41  | 8 0.304  | 0.226        |
| Indirect Effect | t (L)  | 1     | 071   | 0.    | 907 | 0.7    | 40  | 0.58  | 0 0.407  | 0.317        |
| 20%Retur        | rned   | 0.3   | 3048  | 0.    | 292 | 0.24   | 56  | 0.199 | 6 0.1422 | 0.1086       |
| %Increment      |        | 4     | 43.8  |       | 9.6 | 38     | 3.5 | 39.   | 3 39.6   | 39.5         |
|                 | 1986   | -90   | 1993  | 1-95  | 199 | 96-00  | 20  | 01-05 | 2006-10  |              |
|                 | C      | ).215 |       | 0.181 |     | 0.135  |     | 0.114 | 0.108    |              |
|                 | C      | .195  |       | 0.162 |     | 0.122  |     | 0.1   | 0.1      |              |
|                 | C      | ).193 |       | 0.155 |     | 0.105  |     | 0.09  | 0.085    |              |
|                 | 0.     | 0776  | 0     | .0634 |     | 0.0454 |     | 0.038 | 0.037    |              |
|                 | 3      | 6.1   |       | 35.0  |     | 33.6   |     | 33.3  | 34.3     | ADBInstitute |
|                 |        |       |       |       |     | C      |     |       |          |              |

# Case Study: Southern Tagalog Arterial Road (STAR), Philippines (Micro-data Analysis)

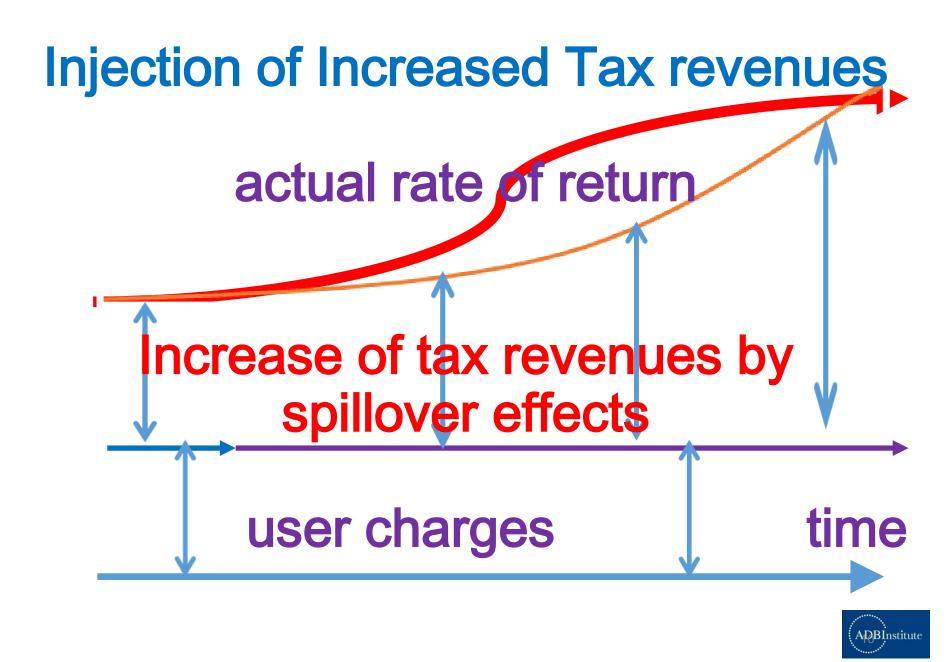
- The Southern Tagalog Arterial Road (STAR) project in Batangas province, Philippines (south of Metro Manila) is a modified Built-Operate-Transfer (BOT) project.
- The 41.9 km STAR tollway was built to improve road linkage between Metro Manila and Batangas City, provide easy access to the Batangas International Port, and thereby accelerate industrial development in Batangas and nearby provinces.



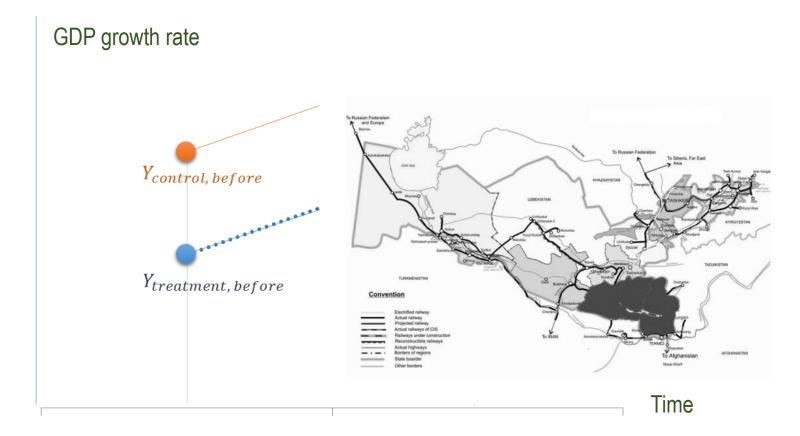




#### The Southern Tagalog Arterial Road (STAR Highway), Philippines, Manila Tax Revenues in three cities Yoshino and Pontines (2015) ADBI Discussion paper 549


表 8 フィリピンの STAR 高速道路の影響のない地域と比較した事業税の増加額 (単位:100 万ペソ)

|            | t_2    | <i>t</i> <sub>-1</sub> | $t_0$  | <i>t</i> <sub>+1</sub> | t <sub>+2</sub> | <i>t</i> <sub>+3</sub> | <i>t</i> +4以降 |
|------------|--------|------------------------|--------|------------------------|-----------------|------------------------|---------------|
| Lipa 市     | 134.36 | 173.50                 | 249.70 | 184.47                 | 191.81          | 257.35                 | 371.93        |
| Ibaan 市    | 5.84   | 7.04                   | 7.97   | 6.80                   | 5.46            | 10.05                  | 12.94         |
| Batangas 市 | 490.90 | 622.65                 | 652.83 | 637.89                 | 599.49          | 742.28                 | 1208.61       |


(出所) Yoshino and Pontines (2015)より筆 子作成



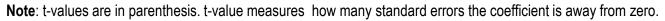
Completion



#### **Uzbekistan Railway: Connectivity is important**



Divide regions affected and not affected by railway connection to "Treated group" and "Control group"


Naoyuki Yoshino - Umid Abidhadjaev. "Impact evaluation of infrastructure provision: case studies from Japan and Uzbekistan". December 14-15, 2015. Islamabad, Pakistan





#### GDP

|         | GDP              | Term  | Connectivity spillover effect | Regional spillover effect | Neighboring spillover<br>effect |
|---------|------------------|-------|-------------------------------|---------------------------|---------------------------------|
|         | Launching        | Short | 2.83***[4.48]                 | 0.70[0.45]                | 1.33[1.14]                      |
|         | Effects          | Mid   | 2.5***[6.88]                  | 0.36[0.29]                | 1.27[1.46]                      |
|         |                  | Long  | 2.06***[3.04]                 | -0.42[-0.29]              | 2.29**[2.94]                    |
| -       | Anticipated      | Short | 0.19[0.33]                    | 0.85[1.75]                | -0.18[-0.20]                    |
| Vear    |                  | Mid   | 0.31[0.51]                    | 0.64[1.30]                | -0.02[-0.03]                    |
| 1 VE    |                  | Long  | 0.07[0.13]                    | -0.006[-0.01]             | 0.50[0.67]                      |
|         | Postponed Effect | S     | 1.76*[1.95]                   | -1.49[-0.72]              | 2.58*[2.03]                     |
| -       | Anticipated      | Short | -1.54[-1.66]                  | 1.42[0.78]                | -1.32[-0.92]                    |
| SIG     |                  | Mid   | 0.32[0.44]                    | 0.84[1.42]                | 0.13[0.13]                      |
| 2 vears |                  | Long  | 0.11[0.15]                    | 0.10[0.16]                | 0.87[1.19]                      |
| -       | Postponed Effect | S     | -0.14[-0.20]                  | -1.71[-1.35]              | 1.05[1.44]                      |



legend: \* p<.1; \*\* p<.05; \*\*\* p<.01

Naoyuki Yoshino - Umid Abidhadjaev. "Impact evaluation of infrastructure provision: case studies from Japan and Uzbekistan".

5



### Additional tax revenue, Regional GDP growth and Railway Company Net Income, LCU (bln.)

| Period                    | Coefficients      | T(20)*∆Y<br>(Tax<br>revenue) | ΔY Affected<br>(Direct + Spillover<br>effects) | Company net<br>income<br>(Revenue -<br>Costs) |
|---------------------------|-------------------|------------------------------|------------------------------------------------|-----------------------------------------------|
| Short term<br>(2009-2010) | 2.83***<br>[4.48] | 16.0                         | 79.9                                           | 315.5                                         |
| Mid-term<br>(2009-2011)   | 2.48***<br>[6.88] | 16.3                         | 81.5                                           | 411.7                                         |
| Long-term<br>(2009-2012)  | 2.06***<br>[3.04] | 14.7                         | 73.5                                           | 509.0                                         |

Source: Authors' calculations



### **Japanese Bullet Train**





#### Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 1<sup>st</sup> PHASE OF OPERATION period

{2004-2010}, mln. JPY (adjusted for CPI, base 1982)

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 |
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

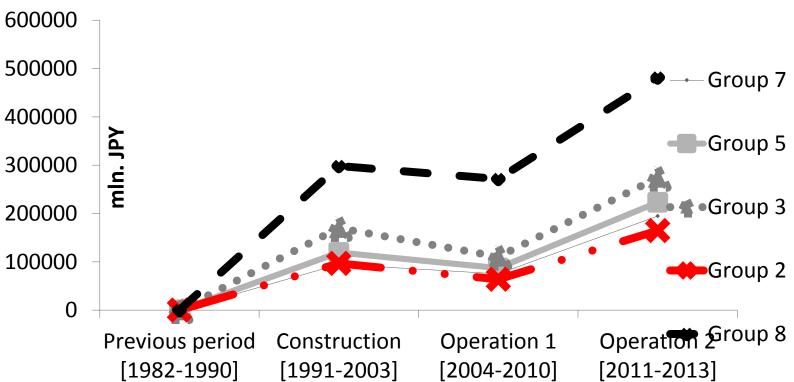
**COMPOSITION OF** GROUPS

| Variable      | Regression 1 | Regression 2 | Regression 3 | Regression 4 | Regression 5 | Group2    | Group5     |
|---------------|--------------|--------------|--------------|--------------|--------------|-----------|------------|
| Treatment2    | -4772.54     | -            | -            | -            | -            | Kagoshima | Kagoshima  |
|               | [-0.2]       |              |              |              |              | Kumamoto  | Kumamoto   |
| Number of tax |              |              |              |              |              |           | Fukuoka    |
| payers        | 5.8952514*   | 5.8957045*   | 5.896112*    | 5.8953585*   | 5.8629645*   | Group3    | Oita       |
|               | [1.95]       | [1.95]       | [1.95]       | [1.95]       | [1.91]       | Kagoshima | Miyazaki   |
| Treatment3    |              | -15947.8     |              |              |              | Kumamoto  | Ινιιγαζακί |
|               |              | [-0.87]      |              |              |              |           |            |
| Treatment5    |              |              | -13250.4     |              |              | Fukuoka   |            |
|               |              |              | [-1.06]      |              |              |           |            |
| Treatment7    |              |              |              | -6883.09     |              |           | GroupCon   |
|               |              |              |              | [-0.7]       |              | Group7    | Kagoshima  |
| TreatmentCon  |              |              |              |              | -28030.8     | Kagoshima | Kumamoto   |
|               |              |              |              |              | [-0.65]      | Kumamoto  | Fukuoka    |
| Constant      | -665679      | -665418      | -665323      | -665358      | -658553      |           |            |
|               | [-1.35]      | [-1.35]      | [-1.35]      | [-1.35]      | [-1.32]      | Fukuoka   | Osaka      |
|               |              |              |              |              |              | Oita      | Hyogo      |
| Ν             | 799          | 799          | 799          | 799          | 799          | Miyazaki  | Okayama    |
| R2            | 0.269215     | 0.269281     | 0.269291     | 0.269241     | 0.269779     | Saga      | Hiroshima  |
| F             | 1.934589     | 2.106448     | 2.074548     | 2.100607     | 8.497174     | Nagasaki  | Yamaguchi  |

**Note**: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: \* p<.1; \*\* p<.05; \*\*\* p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

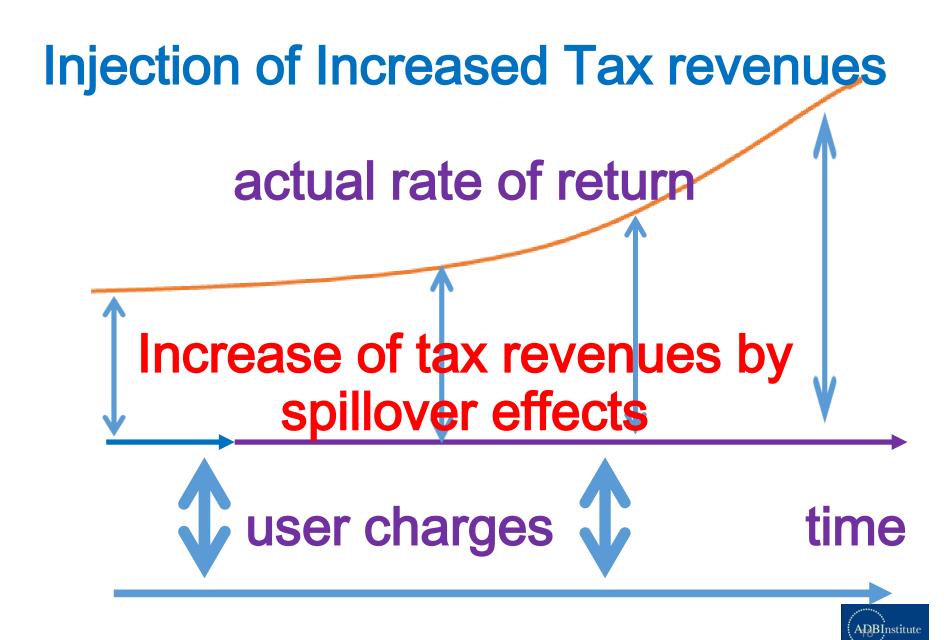


#### Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 2<sup>nd</sup> PHASE OF OPERATION period {2011-2013}, mln. JPY (adjusted for CPI, base 1982)


| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 19 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
|---|---|---|---|---|---|---|---|---|---|---|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 94 | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 9 | 9 | 9 | 9    | 9 | 9 | 9 | 9 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3    | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 |
|   |   |   |   |   |   |   |   |   |   |   |      |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |

#### COMPOSITION OF GROUPS

| Variable      | Regression 1 | Regression 2 | Regression 3 | Regression 4 | Regression 5 | Group2    | Group5    |
|---------------|--------------|--------------|--------------|--------------|--------------|-----------|-----------|
| Treatment2    | 72330.012**  |              |              |              |              | Kagoshima | Kagoshima |
|               | [2.2]        |              |              |              |              | Kumamoto  | Kumamoto  |
| Number of tax |              |              |              |              |              |           | Fukuoka   |
| payers        | 5.5277056*** | 5.5585431*** | 5.558603***  | 5.5706545*** | 5.9640287*** | Group3    | Oita      |
|               | [3.13]       | [3.14]       | [3.14]       | [3.14]       | [3.07]       | Kagoshima | Miyazaki  |
| Treatment3    |              | 104664.34*   |              |              |              | Kumamoto  | iniyazanı |
|               |              | [2]          |              |              |              | Fukuoka   |           |
| Treatment5    |              |              | 82729.673**  |              |              | FUNUUNA   |           |
| _             |              |              | [2.1]        |              |              |           |           |
| Treatment7    |              |              |              | 80998.365**  |              |           | GroupCon  |
|               |              |              |              | [2.34]       | /=0000       | Group7    | Kagoshima |
| TreatmentCon  |              |              |              |              | 179632       | Kagoshima | Kumamoto  |
| Ormatant      | C00400 00**  | CZ0Z4Z 00**  | F7404F 07**  | F70007 F0**  | [1.58]       | Kumamoto  | Fukuoka   |
| Constant      | -568133.98** | -573747.28** | -574245.87** | -576867.56** | -642138.87** | Fukuoka   | Osaka     |
|               | [-2.07]      | [-2.08]      | [-2.08]      | [-2.09]      | [-2.1]       | Oita      | Hyogo     |
| Ν             | 611          | 611          | 611          | 611          | 611          | Miyazaki  | Okayama   |
| R2            | 0.350653     | 0.352058     | 0.352144     | 0.352874     | 0.364088     | Saga      | Hiroshima |
| <u>F</u>      | 5.062509     | 5.486197     | 5.351791     | 5.431088     | 16.55518     | Nagasaki  | Yamaguchi |


**Note**: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: \* p<.1; \*\* p<.05; \*\*\* p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures



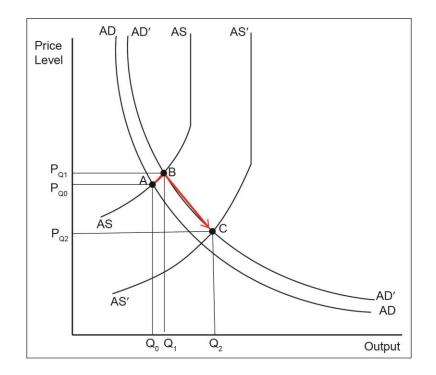


#### Total tax revenue, mln. JPY





### **Estimation of water related Risk**


- 1. Negative Effects of Flood, Typhoon etc.
- How to measure negative impacts?
- (1) <Direct effects>
  - Changes in Production of Agricultural products Changes in Income tax revenues Changes in Corporate tax revenues
    - Changes in Sales  $\rightarrow$  Consumption tax
- (2)<Spillover effects>
  - Decline in supply of food and other goods
  - $\rightarrow$  Increase in prices of goods and services



### Estimation of Indirect Effects of Disaster to Macro economy

#### (3) Impact of rising price of commodities

- → Households' consumption declines
- → Increase of general price level





### **Economic Effects of Dam Construction**

- 1, Stable supply of clean water
- 2, Increase of property value (Ex. Manila water) changes in property prices
- 3, Industries come to the region corporate tax revenues, increase in Sales
- 4, Clean water improves health condition number of patients
- 5, Increase in Tax revenues will tell the impact Income tax revenues



### **Case Study of Natural Disaster**

- 1, Japanese Dam construction
- 2, Thailand flood case
- 3, Philippines typhoon case
- 4, Difference in difference method and Macro economic data
- 5, Estimation of the negative impact
- 6, Compare with construction costs





#### Possible Solutions by use of community funds

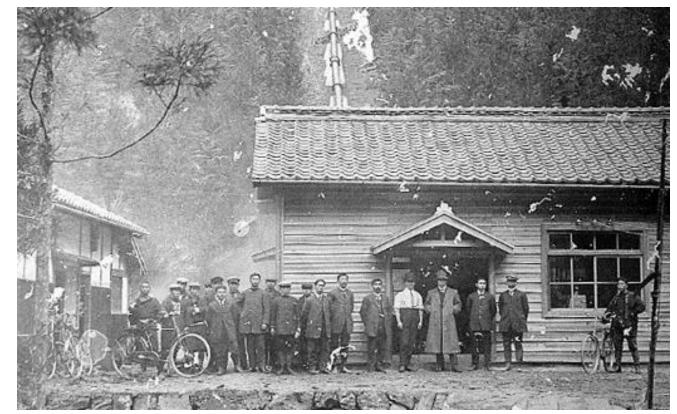
Naoyuki Yoshino · Sahoko Kaji Editors

## Hometown Investment Trust Funds

A Stable Way to Supply Risk Capital

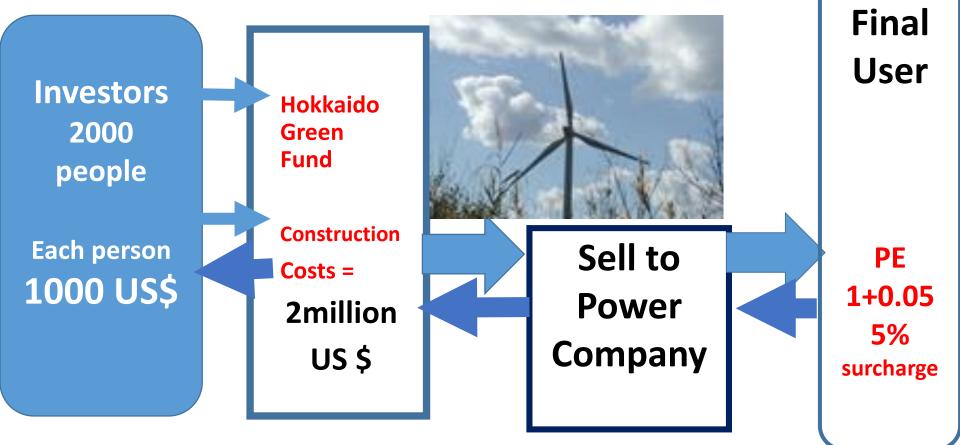
**Hometown Investment** 

A Stable Way to Supply Risk Capital


Yoshino, Naoyuki; Kaji Sahoko (Eds.), 2013,

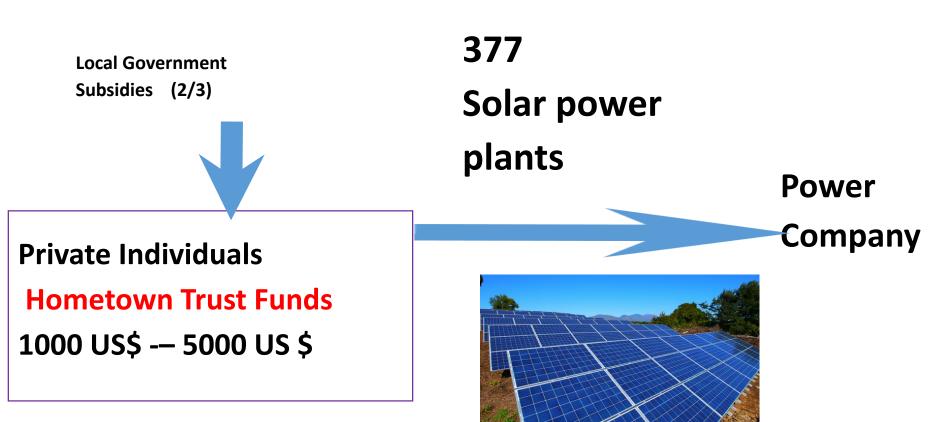


🖄 Springer


#### Revitalization of Tsukubane Hydro Power (Nara state) 250 investors, total 525 thousand US dollars, Japan

Original Dam was constructed more than 100 years ago






#### Private Financial Scheme of Wind Power Collected by Individuals (started in 2001-9)











#### References

# Yoshino N. Kaji, S. (2013) *Hometown Investment Trust Funds*, Springer, March 2013

Yoshino, N., Taghizadeh Hesary, F. (2014), 'Analytical Framework on Credit Risks for Financing SMEs in Asia'. <u>Asia-</u> <u>Pacific Development Journal</u>. United Nations Economic and Social Commission for Asia and the Pacific (UN-ESCAP)

Yoshino, N. and Pontines, Victor (2015) "The Highway-Effect on Public Finance: Case of the STAR Highway in the Phillippines", GIE | AAA Special Kick-off Edition, GIE Network publishing.



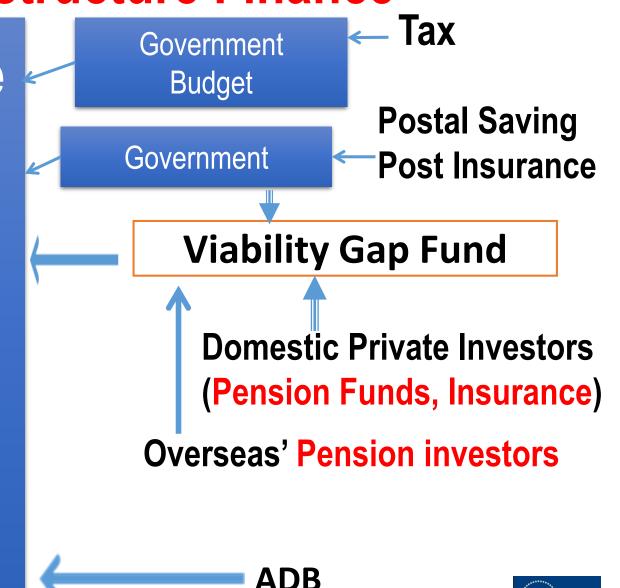
Nakahigashi, M and Yoshino, N. (2016) "Changes in Economic Effect of Infrastructure and Financing Method", <u>Public Policy Review</u>, Vol.12, No.1.

Yoshino, Naoyuki (2010) "Financing Transport Infrastructure Investment", OECD (ed.), <u>Southeast Asian Economic Outlook 2010</u>, OECD Publishing.

Yoshino, Naoyuki (2012) "Global Imbalances and the Development of Capital Flows among Asian Countries", OECD Journal: Financial Market <u>Trends</u>, Vol. 2012/1

Yoshino, Naoyuki and Masaki Nakahigashi (2004) "The Role of Infrastructure in Economic Development", <u>ICFAI Journal of Managerial</u> <u>Economics</u>, 2, pp. 7-24

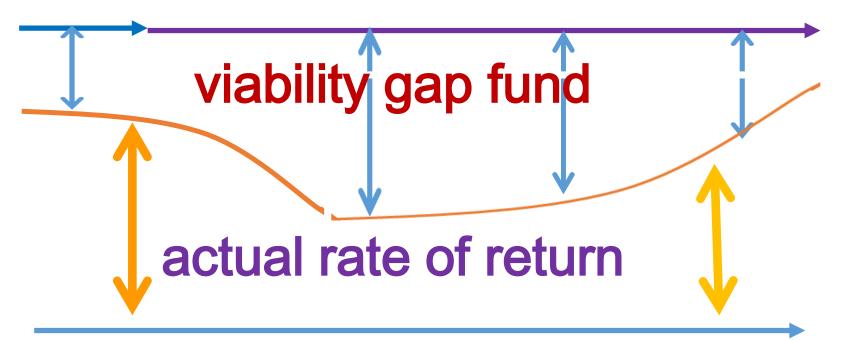
Yoshino, Naoyuki and Victor Pontines (2015) "The Highway Effect on Public Finance: Case of the STAR Highway in the Philippines", <u>Asian</u> <u>Development Bank Institute (ADBI) Working Paper No.549</u>.


Yoshino, Naoyuki, Victor Pontines and Umid Abidhadjaev (2015) "Impact Evaluation of Infrastructure Provision on Public Finance and Economic Performance: Empirical Evidence from Philippines and Uzbekistan", <u>Asian</u> <u>Development Bank Institute (ADBI), Working Paper, No.548.</u>



### Infrastructure Finance

### Infrastructure investment


Increase Rate of return By injecting Incremental Tax revinues Obtained by Spillover effects



ADBInstitute

#### Viability Gap Fund and Government Burden Investors only benefit

### fixed rate of return



